Markovian processes, two-sided autoregressions and finite-sample inference for stationary and nonstationary autoregressive processes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Markovian Processes, Two-Sided Autoregressions and Finite-Sample Inference for Stationary and Nonstationary Autoregressive Processes

In this paper, we develop finite-sample inference procedures for stationary and nonstationary autoregressive (AR) models. The method is based on special properties of Markov processes and a split-sample technique. The results on Markovian processes (intercalary independence and truncation) only require the existence of conditional densities. They are proved for possibly nonstationary and/or non...

متن کامل

Stationary and Integrated Autoregressive Neural Network Processes

We consider autoregressive neural network (AR-NN) processes driven by additive noise and demonstrate that the characteristic roots of the shortcuts-the standard conditions from linear time-series analysis-determine the stochastic behavior of the overall AR-NN process. If all the characteristic roots are outside the unit circle, then the process is ergodic and stationary. If at least one charact...

متن کامل

Stationary solutions for integer-valued autoregressive processes

The purpose of this paper is to introduce and develop a family of Z+-valued autoregressive processes of order p (INAR(p)) by using the generalized multiplication F of van Harn and Steutel (1982). We obtain various distributional and regression properties for these models. A number of stationary INAR(p) processes with specific marginals are presented and are shown to generalize several existing ...

متن کامل

Inference for modulated stationary processes.

We study statistical inferences for a class of modulated stationary processes with time-dependent variances. Due to non-stationarity and the large number of unknown parameters, existing methods for stationary or locally stationary time series are not applicable. Based on a self-normalization technique, we address several inference problems, including self-normalized central limit theorem, self-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Econometrics

سال: 2000

ISSN: 0304-4076

DOI: 10.1016/s0304-4076(00)00026-9